ViSP  3.0.0
servoSimuCylinder2DCamVelocityDisplay.cpp
1 /****************************************************************************
2  *
3  * This file is part of the ViSP software.
4  * Copyright (C) 2005 - 2015 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * ("GPL") version 2 as published by the Free Software Foundation.
9  * See the file LICENSE.txt at the root directory of this source
10  * distribution for additional information about the GNU GPL.
11  *
12  * For using ViSP with software that can not be combined with the GNU
13  * GPL, please contact Inria about acquiring a ViSP Professional
14  * Edition License.
15  *
16  * See http://visp.inria.fr for more information.
17  *
18  * This software was developed at:
19  * Inria Rennes - Bretagne Atlantique
20  * Campus Universitaire de Beaulieu
21  * 35042 Rennes Cedex
22  * France
23  *
24  * If you have questions regarding the use of this file, please contact
25  * Inria at visp@inria.fr
26  *
27  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
28  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
29  *
30  * Description:
31  * Simulation of a 2D visual servoing on a cylinder.
32  *
33  * Authors:
34  * Eric Marchand
35  * Fabien Spindler
36  *
37  *****************************************************************************/
38 
49 #include <visp3/core/vpDebug.h>
50 #include <visp3/core/vpConfig.h>
51 
52 #if (defined (VISP_HAVE_X11) || defined(VISP_HAVE_GTK) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_OPENCV))
53 
54 #include <stdlib.h>
55 #include <stdio.h>
56 
57 #include <visp3/core/vpCameraParameters.h>
58 #include <visp3/core/vpCylinder.h>
59 #include <visp3/gui/vpDisplayX.h>
60 #include <visp3/gui/vpDisplayGTK.h>
61 #include <visp3/gui/vpDisplayGDI.h>
62 #include <visp3/gui/vpDisplayOpenCV.h>
63 #include <visp3/visual_features/vpFeatureBuilder.h>
64 #include <visp3/visual_features/vpFeatureLine.h>
65 #include <visp3/core/vpHomogeneousMatrix.h>
66 #include <visp3/core/vpImage.h>
67 #include <visp3/core/vpMath.h>
68 #include <visp3/io/vpParseArgv.h>
69 #include <visp3/vs/vpServo.h>
70 #include <visp3/robot/vpSimulatorCamera.h>
71 #include <visp3/vs/vpServoDisplay.h>
72 
73 // List of allowed command line options
74 #define GETOPTARGS "cdh"
75 
76 void usage(const char *name, const char *badparam);
77 bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display);
78 
87 void usage(const char *name, const char *badparam)
88 {
89  fprintf(stdout, "\n\
90 Simulation of a 2D visual servoing on a cylinder:\n\
91 - eye-in-hand control law,\n\
92 - velocity computed in the camera frame,\n\
93 - display the camera view.\n\
94  \n\
95 SYNOPSIS\n\
96  %s [-c] [-d] [-h]\n", name);
97 
98  fprintf(stdout, "\n\
99 OPTIONS: Default\n\
100  \n\
101  -c\n\
102  Disable the mouse click. Useful to automaze the \n\
103  execution of this program without humain intervention.\n\
104  \n\
105  -d \n\
106  Turn off the display.\n\
107  \n\
108  -h\n\
109  Print the help.\n");
110 
111  if (badparam)
112  fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
113 }
114 
126 bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display)
127 {
128  const char *optarg_;
129  int c;
130  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
131 
132  switch (c) {
133  case 'c': click_allowed = false; break;
134  case 'd': display = false; break;
135  case 'h': usage(argv[0], NULL); return false; break;
136 
137  default:
138  usage(argv[0], optarg_);
139  return false; break;
140  }
141  }
142 
143  if ((c == 1) || (c == -1)) {
144  // standalone param or error
145  usage(argv[0], NULL);
146  std::cerr << "ERROR: " << std::endl;
147  std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
148  return false;
149  }
150 
151  return true;
152 }
153 
154 
155 int
156 main(int argc, const char ** argv)
157 {
158  try {
159  bool opt_display = true;
160  bool opt_click_allowed = true;
161 
162  // Read the command line options
163  if (getOptions(argc, argv, opt_click_allowed, opt_display) == false) {
164  exit (-1);
165  }
166 
167  vpImage<unsigned char> I(512,512,255) ;
168 
169  // We open a window using either X11, GTK or GDI.
170 #if defined VISP_HAVE_X11
171  vpDisplayX display;
172 #elif defined VISP_HAVE_GTK
173  vpDisplayGTK display;
174 #elif defined VISP_HAVE_GDI
175  vpDisplayGDI display;
176 #elif defined VISP_HAVE_OPENCV
177  vpDisplayOpenCV display;
178 #endif
179 
180  if (opt_display) {
181  try{
182  // Display size is automatically defined by the image (I) size
183  display.init(I, 100, 100,"Camera view...") ;
184  // Display the image
185  // The image class has a member that specify a pointer toward
186  // the display that has been initialized in the display declaration
187  // therefore is is no longuer necessary to make a reference to the
188  // display variable.
189  vpDisplay::display(I) ;
190  vpDisplay::flush(I) ;
191  }
192  catch(...)
193  {
194  vpERROR_TRACE("Error while displaying the image") ;
195  exit(-1);
196  }
197  }
198 
199  double px, py ; px = py = 600 ;
200  double u0, v0 ; u0 = v0 = 256 ;
201 
202  vpCameraParameters cam(px,py,u0,v0);
203 
204  vpServo task ;
205  vpSimulatorCamera robot ;
206 
207  // sets the initial camera location
208  vpHomogeneousMatrix cMo(-0.2,0.1,2,
209  vpMath::rad(5), vpMath::rad(5), vpMath::rad(20));
210 
211  vpHomogeneousMatrix wMc, wMo;
212  robot.getPosition(wMc) ;
213  wMo = wMc * cMo; // Compute the position of the object in the world frame
214 
215  // sets the final camera location (for simulation purpose)
216  vpHomogeneousMatrix cMod(0,0,1,
217  vpMath::rad(-60), vpMath::rad(0), vpMath::rad(0));
218 
219  // sets the cylinder coordinates in the world frame
220  vpCylinder cylinder(0,1,0, // direction
221  0,0,0, // point of the axis
222  0.1) ; // radius
223 
224  // sets the desired position of the visual feature
225  cylinder.track(cMod) ;
226  cylinder.print() ;
227 
228  vpFeatureLine ld[2] ;
229  int i ;
230  for(i=0 ; i < 2 ; i++)
231  vpFeatureBuilder::create(ld[i],cylinder,i) ;
232 
233  // computes the cylinder coordinates in the camera frame and its 2D coordinates
234  // sets the current position of the visual feature
235  cylinder.track(cMo) ;
236  cylinder.print() ;
237 
238  vpFeatureLine l[2] ;
239  for(i=0 ; i < 2 ; i++)
240  {
241  vpFeatureBuilder::create(l[i],cylinder,i) ;
242  l[i].print() ;
243  }
244 
245  // define the task
246  // - we want an eye-in-hand control law
247  // - robot is controlled in the camera frame
249  // task.setInteractionMatrixType(vpServo::CURRENT, vpServo::PSEUDO_INVERSE) ;
250  // it can also be interesting to test these possibilities
251  // task.setInteractionMatrixType(vpServo::MEAN, vpServo::PSEUDO_INVERSE) ;
253  //task.setInteractionMatrixType(vpServo::DESIRED, vpServo::TRANSPOSE) ;
254  // task.setInteractionMatrixType(vpServo::CURRENT, vpServo::TRANSPOSE) ;
255 
256  // - we want to see 2 lines on 2 lines
257  task.addFeature(l[0],ld[0]) ;
258  task.addFeature(l[1],ld[1]) ;
259 
260  vpServoDisplay::display(task,cam,I) ;
261  vpDisplay::flush(I) ;
262 
263  // Display task information
264  task.print() ;
265 
266  if (opt_display && opt_click_allowed) {
267  std::cout << "\n\nClick in the camera view window to start..." << std::endl;
269  }
270 
271  // - set the gain
272  task.setLambda(1) ;
273 
274  // Display task information
275  task.print() ;
276 
277  unsigned int iter=0 ;
278  // loop
279  do
280  {
281  std::cout << "---------------------------------------------" << iter++ <<std::endl ;
282  vpColVector v ;
283 
284  // get the robot position
285  robot.getPosition(wMc) ;
286  // Compute the position of the camera wrt the object frame
287  cMo = wMc.inverse() * wMo;
288 
289  // new line position
290  // retrieve x,y and Z of the vpLine structure
291  cylinder.track(cMo) ;
292  // cylinder.print() ;
293  for(i=0 ; i < 2 ; i++)
294  {
295  vpFeatureBuilder::create(l[i],cylinder,i) ;
296  // l[i].print() ;
297  }
298 
299  if (opt_display) {
300  vpDisplay::display(I) ;
301  vpServoDisplay::display(task,cam,I) ;
302  vpDisplay::flush(I) ;
303  }
304 
305  // compute the control law
306  v = task.computeControlLaw() ;
307 
308  // send the camera velocity to the controller
310 
311  std::cout << "|| s - s* || = " << ( task.getError() ).sumSquare() <<std::endl ; ;
312 
313  // vpDisplay::getClick(I) ;
314  }
315  while(( task.getError() ).sumSquare() > 1e-9) ;
316 
317  if (opt_display && opt_click_allowed) {
318  std::cout << "\nClick in the camera view window to end..." << std::endl;
320  }
321 
322  // Display task information
323  task.print() ;
324  task.kill();
325  return 0;
326  }
327  catch(vpException e) {
328  std::cout << "Catch a ViSP exception: " << e << std::endl;
329  return 1;
330  }
331 }
332 
333 #else
334 int
335 main()
336 {
337  vpERROR_TRACE("You do not have X11, GTK, GDI or OpenCV display functionalities...");
338 }
339 
340 #endif
void init(vpImage< unsigned char > &I, int winx=-1, int winy=-1, const char *title=NULL)
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
void print(const unsigned int select=FEATURE_ALL) const
Implementation of an homogeneous matrix and operations on such kind of matrices.
Class that defines the simplest robot: a free flying camera.
#define vpERROR_TRACE
Definition: vpDebug.h:391
Display for windows using GDI (available on any windows 32 platform).
Definition: vpDisplayGDI.h:128
Define the X11 console to display images.
Definition: vpDisplayX.h:148
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, const unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:446
error that can be emited by ViSP classes.
Definition: vpException.h:73
static void flush(const vpImage< unsigned char > &I)
Definition: vpDisplay.cpp:2233
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:76
void kill()
Definition: vpServo.cpp:186
vpColVector getError() const
Definition: vpServo.h:271
vpColVector computeControlLaw()
Definition: vpServo.cpp:899
static void display(const vpImage< unsigned char > &I)
Definition: vpDisplay.cpp:206
The vpDisplayOpenCV allows to display image using the opencv library.
Generic class defining intrinsic camera parameters.
void setLambda(double c)
Definition: vpServo.h:390
Class that defines a 2D line visual feature which is composed by two parameters that are and ...
The vpDisplayGTK allows to display image using the GTK+ library version 1.2.
Definition: vpDisplayGTK.h:141
vpHomogeneousMatrix getPosition() const
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:519
static double rad(double deg)
Definition: vpMath.h:104
Class that defines what is a cylinder.
Definition: vpCylinder.h:93
Implementation of column vector and the associated operations.
Definition: vpColVector.h:72
vpHomogeneousMatrix inverse() const
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:248
virtual bool getClick(bool blocking=true)=0
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:217
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)