
Epigrass Documentation
Release 2.0a1

Flavio Codeco Coelho

July 09, 2008

ii

CONTENTS

1 Overview of Epigrass 3
1.1 Modeling Approach . 3
1.2 Geographical Network Models . 3
1.3 The Simulation . 5

2 Building and Installing 7
2.1 Required Packages . 7

3 Using Epigrass 11
3.1 Data . 11
3.2 Specifying a model: the script . 13
3.3 The Graphical User Interface(GUI) . 17

4 Writing Custom Models 23
4.1 Getting Started . 23
4.2 The Environment . 25

5 Indices and tables 29

Index 31

i

ii

Epigrass Documentation, Release 2.0a1

Epigrass is a framework for the construction and simulation of complex network epidemiology models. At least
this is its main vocation. However, Epigrass can be used to simulate any dynamical system on a set of nodes
(connected into a network or not!). Epigrass is written in pure Python and is scriptable in Python, for your
enjoyment!.

Contents:

Contents 1

2

CHAPTER

ONE

Overview of Epigrass

Epigrass is a platform for network epidemiological simulation and analysis. It enables researchers to perform com-
prehensive spatio-temporal simulations incorporating epidemiological data and models for disease transmission
and control in order to create sophisticated scenario analyses.

1.1 Modeling Approach

The geographical networks over which epidemiological processes take place can be very straightforwardly repre-
sented in a object-oriented framework. In such a framework, the nodes and edges of the geographical networks
are objects with their attributes and methods.

Once the archetypal node and edge objects are defined with appropriate attributes and methods, then a code repre-
sentation of the real system can be constructed, where cities (or other geographical localities) and transportation
routes are instances of the node and edge objects, respectively. The whole network is also an object with a whole
collection of attributes and methods.

This framework leads to a compact and hierarchical computational model consisting of a network object containing
a variable number of node and edge objects. This framework also do not pose limitations to encapsulation,
potentially allowing for networks within networks if desirable.

For the end user perspective, this framework is transparent since it mimics the natural structure of the real system.
Even after the model is converted into a code object all of its component objects remain accessible to the user’s
models.

1.2 Geographical Network Models

Epigrass’s geo-referenced models are built from two basic sources of data: a map (in shapefile format) which
provide the cartographical base over which the models are represented and specific data about nodes and edges
that are provided by the user for the network of interest.

1.2.1 Defining the Cartographic Background

If the user has a map for the georeferred data, this can be passed to Epigrass. In this case, the cartographic
background is defined by defining the name of the shapefile file (with path relative to the working directory) in the
model’.epg file. Along with the path to the shapefile, the variable in the shapefile, which contains the geocode of
localities and their name must also be specified:

shapefile = [’riozonas_LatLong.shp’,’nome_zonas’,’zona_trafe’]

If the user does not have a map in shapefile format, he can still use Epigrass. In this case, the georeferred data is
read only from two .csv files (more on that ahead).

3

Epigrass Documentation, Release 2.0a1

1.2.2 Defining Nodes

A graph has nodes and edges. Nodes can be cities or other localities depending on the model being constructed.
The definition of nodes require the setting of many attributes listed below. The nodes will have many more
attributes defined at run-time which will depend on other aspects of the model, these will be discussed later.

The data necessary at build time to create nodes come from a CSV (comma-separated-values) ASCII-text file,
with the following attributes, (in this order):

Latitude, Longitude This attribute will be used to geo reference the node. The coordinate system must match
those used in the cartographic base imported from GRASS. Coordinates can be coded in either decimal or
sexagesimal format.

Name Used for identification purposes only. It can be a city name, for instance.

Population Since the simulation models will all be of a populational nature. Population size must be specified at
build time.

Geocode A Unique Geocode (a number) is required. It will be used as a label/index to facilitate reference to
specific nodes.

1.2.3 Defining Edges

In Epigrass’ graphs, edges represent transportation routes. Similarly to nodes, edges are defined at build-time with
a reduced set of attributes which will be extended at run-time. Epigrass also expects to get these attributes from a
CSV file:

Source The name of the source node. The edges are bi-directional, but the nodes are labeled source and destina-
tion for reference purposes.

Destination The name of the destination node.

Forward migration Migration rate from source to destination, in number of persons per unit of time.

Backward migration Migration rate from destination to source, in number of persons per unit of time.

Length Distance in kilometers (or another unit) from source to destination via the particular route (not straight
line distance).

Source’s geocode This is the unique numerical identifier used in the sites file.

Destination’s geocode This is the unique numerical identifier used in the sites file.

1.2.4 Defining models

The word model in Epigrass can mean two distinct objects: The network model and the node’s epidemic model.

Node objects, in an Epigrass model, contain well-mixed population dynamic models within them. These models
determine the dynamics of epidemics within the particular environments of each node. Epigrass comes with
a few standard epidemiological modelsindex{Models!epidemiological models} to choose from when setting up
your network. Currently, The same model type is applied to every node although their parameterization is node-
specific. Besides the built-in model types, users can define their own, as shown in the chapter Using Epigrass.
Network models are specified in a ASCII-text script file (Called a .epg file). Epigrass comes with a few demo
Network models for the user to play with until he/she is confident enough to build their own. Even then, it is
advisable to use the demo scripts provided as templates to minimize syntax errors.

The script on the appendix specifies a network model with an stochastic SEIR (see chapter on epidemiological
modeling) epidemic model in its nodes. The user should study this model and play with its parameters to under-
stand the features of Epigrass. A step-by-step tutorial on how to edit the model script can be found in the chapter
Using Epigrass.

4 Contents

Epigrass Documentation, Release 2.0a1

1.3 The Simulation

A simulation run in Epigrass consists of a series of tasks performed at each time step 1 .

Calculate migration For all edges in the network, the number of persons traveling each way is determined for the
current time-step.

Run epidemic models For each node in the network the epidemic demographics are updated based on the local
number of infected and susceptible individuals which have been updated by the transportation system.

All aspects of the simulation such as number of passengers traveling on each edge, number of infected/susceptible
on each node and etc., are recorded in a step-by-step basis. This complete record allows for the model to be
analyzed after the simulation has been completed without having to recalculate it.

1.3.1 Output

The output of a simulation in Epigrass is three-fold: A graphical display which the animated outcome of the
simulation, a written report, and a database table with numeric results.

Graphical display

During a simulation, selected epidemiological variables are animated in a 3-dimensional rendering over the map
of the region containing the network.

Report Generation

The report contains a detailed analysis of the network model and the simulations ran with it. The report generates
a LaTeX source file and compiles it to a PDF document for visualization.

Three types of report are currently available:

Report = 1 Returns a set of descriptors of the network, described in chapter

Report = 2 Returns a set of basic epidemiological measures and plots of the time series.

Report = 3 Report 1 + Report 2

Report Generation is an optional, though recommended, step done at the end of the simulation. For the report,
descriptive statistics are generated for the network. These have to do with network topology and properties.
Additional sections can be added to the report with basic statistical analyses of the output of pre-selected nodes 2 .

Database output

Time series of L, S, E, and I, from simulations, are stored in a MySQL database named epigrass . The results
of each individual simulation is stored in a different table named after the model’s script name, the date and
time the simulation has been run. For instance, suppose you run a simulation of a model stored in a file named
script.epg, then at the end of the simulation, a new table in the epigrass database will be created with the
following name: script_Wed_Jan_26_154411_2005. Thus, the results of multiple runs from the same model get
stored independently.

Epigrass also supports the SQLite database and CSV files as output for the time-series. The naming convention
also applies to these other formats.

1The number of time steps is defined in the model script
2Listed in the siteRep variable at the script

Contents 5

6

CHAPTER

TWO

Building and Installing

This chapter will walk through all aspects of Epigrass installation. From obtaining, building and installing the
prerequisites to the installation of Epigrass itself.

Most of the steps will be quite simple and similar since they will make use of standard tools for package installation
on Debian GNU/Linux and derivatives. If you use a different distribution, you should check its documentation for
package installation instructions.

If, on your distribution, a package is not available for the required version, you can try to obtain an updated version
of the package at the web-sites provided. On the rare cases where pre-built packages are not available, instructions
on how to build the software from source should also be available from its web-site.

2.1 Required Packages

2.1.1 Python

Web-site: http://www.python.org

Version required: >=2.5

Python is a simple yet powerful object-oriented language. Its simplicity makes it easy to learn, but its power
means that large and complex applications can also be created easily. Its interpreted nature means that Python
programmers are very productive because there is no edit/compile/link/run development cycle.

Python is probably installed automatically by your GNU/Linux distribution (it is on Debian). If not, it is best to
use your distribution’s standard tools for package installation. On Debian for example:

$ sudo apt-get install python python-dev

2.1.2 Numeric Python

Web-site: http://www.scipy.org/numpy

Version required: >= 1.0

Numeric Python is a module for fast numeric computations in Python.

Example installation:

$ sudo apt-get install python-numpy

7

http://www.python.org
http://www.scipy.org/numpy

Epigrass Documentation, Release 2.0a1

2.1.3 Matplotlib

Web-site: http://matplotlib.sourceforge.net

Version required: >0.9

Matplotlib is a Module that provides plotting capabilities to Python.

$ sudo apt-get install python-matplotlib python-matplotlib-data python-matplotlib-doc

2.1.4 PyQt

Web-site: http://www.riverbankcomputing.co.uk/pyqt

Version required: >4.0

PyQt is a set of Python bindings for the Qt toolkit. PyQt combines all the advantages of Qt and Python. A
programmer has all the power of Qt, but is able to exploit it with the simplicity of Python.

PyQt depends on the Qt libraries to run. This dependency will be taken care by the package installation tools of
most distributions, which will automatically install the required version of Qt.

Example installation:

$ sudo apt-get install python-qt4

2.1.5 PyQwt

Web-site: http://pyqwt.sourceforge.net/

Version required: >5.0

PyQwt is a Python binding for the Qwt5 technical widget library. It is necessary for some os Epigrass’ visualiza-
tions capabilities.

Example installation:

$ sudo apt-get install python-qwt5-qt4

2.1.6 MySQL

Web-site: http://www.mysql.com

Version required: >5.0

MySQL is a fast, multi-threaded, multi-user SQL database server. If you have a MySQL server available in your
LAN, you may skip this step after making sure you have permission to access and use it to store your data.

Example installation:

$ sudo apt-get install mysql-server mysql-client python-mysqldb

Post-install configuration

After installing MySQL, you will need to create a new database in the server, called epigrass and a user with all
priviledges to access and modify it. This is the user Epigrass will use to interact with MySQL.

8 Contents

http://matplotlib.sourceforge.net
http://www.riverbankcomputing.co.uk/pyqt
http://pyqwt.sourceforge.net/
http://www.mysql.com

Epigrass Documentation, Release 2.0a1

2.1.7 R

Web-site: http://www.r-project.org

Version required: The most recent.

R is a statistical computing platform whis is very useful to analyze the output of Epirass’s models. The Epigrass
source distribution includes some example R scripts to interact with Epigrass-generated data.

Example installations:

$ apt-get install r-base

After installing R, start an interactive session, and install a few extra packages.

$ R
> update.packages()
> install.packages(’RMySQL’)
> install.packages(’DBI’)
> install.packages(’lattice’)

section{Installing Epigrass} If you got through all the steps above, it will be an easy task to install Epigrass. There
is a .deb package for installing Epirass on Debian and Ubuntu. However, since it is not maitained by the developers
of Epigrass, It may very well be outdated. So please download Epigrass’s source tarball (something named
Epigrass_someversion.tar.gz) from Sourceforge and, after unpacking it to some temporary directory,
install it by typing:

$ sudo python setup.py install

If the installation proceeds without errors, you will have three new executables available on your system:

epigrass This starts Epigrass graphical user interface (GUI).

epirunner This is a command line version of Epigrass. With it you can run models without invoking the GUI. It’s
great for batch simulations and for remote use. for a quick help, try “epirunner -h”.

epgeditor A graphical editor of .epg models. A easy way to edit already existing models. Contains detailed
explanations of every section of the EPG file. :math:‘x_3+y‘
Unknown interpreted text role “math”.

Contents 9

http://www.r-project.org

10

CHAPTER

THREE

Using Epigrass

To simulate an epidemic process in Epigrass, the user needs to have in hand at least three files: Two files containing
the site and edge data and a third file which is a script that defines what it is to be done. Here we go through each
one of them in detail. The last part of this chapter is a step-by step guide the Graphical User Interface (GUI).

3.1 Data

3.1.1 Site data file

See below an example of the content of a site file for a network of 10 cities. Each line corresponds to a site (except
the first line which is the title). For each site, it is declared, in this order: its spatial location in the form of a pair
of coordinates ([X,Y]); a site $name$ to be used in the output; the site’s population; the site geocode (an arbitrary
unique number which is used internally by Epigrass).

X Y City Pop Geocode
1 4 “N1” 1000000 1
2 4 “N2” 100000 2
3 4 “N3” 1000 3
4 4 “N4” 1000 4
5 4 “N5” 1000 5
1 3 “N6” 100000 6
2 3 “N7” 1000 7
3 3 “N8” 100000 8
4 3 “N9” 100000 9
5 3 “N10” 1000 10
1 2 “N11” 1000 11

In this example, the first site is located at [X,Y]=[1,4], it is named N1, its population is 1000000 and its geocode
is 1. This is minimum configuration of a site data file and it must contains this information in exactly this order.

In some situations, the user may want to add other attributes to the sites (different transmission parameters, or
vaccine coverage or initial conditions for simulations). This information is provided by adding new columns to
the minimum file. For example, if one wishes to add information on the vaccine coverage in cities N1 to N10
(vac) as well as information about average temperature (which hypothetically affects the transmission of the
disease), the file becomes:

11

Epigrass Documentation, Release 2.0a1

X Y City Pop Geocode Vac Temp
1 4 “N1” 1000000 1 0.9 32
2 4 “N2” 100000 2 0.88 29
3 4 “N3” 1000 3 0.7 25
4 4 “N4” 1000 4 0.2 34
5 4 “N5” 1000 5 0 26
1 3 “N6” 100000 6 0 27
2 3 “N7” 1000 7 0 31
3 3 “N8” 100000 8 0 30
4 3 “N9” 100000 9 0 24
5 3 “N10” 1000 10 0 31

During the simulation, each site object receives these informations and store them in appropriate variables that can
be used later during model specification. Population is stored in the variable N; while the extra columns (those
beyond the geocode) are stored in a tuple named {values. For example, for the city N1, we have N = 1000000
and values=[0.9,32]. During model specification, we may use N to indicate the population size and/or we can use
values[0] to indicate the level of vaccination of that city and values[1] to indicate the temperature.

It is up to the user, to know what means the elements of the tuple values. Note that the first element of the tuple
has index 0,the second one has index 1 and so on.

When using real data, one may wish to use actual geocodes and coordinates. For example, for a network of
Brazilian cities, one may build the following file:

latitude longitude local pop geocode
-16:19:41 -48:57:10 ANAPOLIS 280164 520110805
-10:54:32 -37:04:03 ARACAJU 461534 280030805
-21:12:27 -50:26:24 ARACATUBA 164449 350280405
-18:38:44 -48:11:36 ARAGUARI 92748 310350405
-21:13:17 -43:46:12 BARBACENA 103669 310560805
-22:32:53 -44:10:30 BARRA_MANSA 165134 330040705
-20:33:11 -48:34:11 BARRETOS 98860 350550005
-26:54:55 -49:04:15 BLUMENAU 241943 420240405
-22:57:09 -46:32:30 B.PAULISTA 111091 350760505

In this file, the coordinates are the actual geographical latitude and longitude coordinates. This information is
important when using Epigrass with a map in shapefile format. The geocode is also the official geocode of these
localities (the same one used in the shapefile). Despite the cumbersome size of the number, it may be worth using
it because demographic official databases are often linked by this number.

3.1.2 Edge data file

The edge data file contains all the direct links between sites. Each line in the file (except for the first, which is the
header) corresponds to an edge. For each edge (or link) one must specify (in this order): the names of the sites
connected by that edge; the number of individuals traveling from source to destination; the number of individuals
travelling from destination to source per time step; the distance or length of the edge. At last, the file must contain,
in the fifth and sixth columns, the geocodes of the source and destination sites*. This is very important as the graph
is built internally connecting sites through edges and this is done based on geocode info.

Warning: It is required that the order of columns is kept the same.

See below the list of the 8 edges connecting the sites N1 to N10. Let’s look the first one, as an example. It links N1
to N2. Through this link passes 11 individuals backwards and forwards per time step (a day, for example). This
edge has length 1 (remember that N1 is at [X,Y]=[1,1] and N2 is at [X,Y]=[1,2], so the distance between them is
1). The last two columns show the geocode of N1 (geocode 1) and the geocode of N2 (geocode 2).

12 Contents

Epigrass Documentation, Release 2.0a1

Source Dest flowSD flowDS Distance geoSource geoDest
N1 N2 11 11 1 1 2
N2 N4 0.02 0.02 1 3 4
N3 N8 1.01 1.01 1 3 8
N4 N9 1.01 1.01 1 4 9
N5 N10 0.02 0.02 1 5 10
N6 N5 1.01 1.01 1 7 8
N7 N10 1.01 1.01 1 7 8
N9 N10 1.01 1.01 1 9 10

Note that it doesn’t matter which site is considered a Source and which one is considered a Destination. I.e., if
there is a link between A and B, one may either named A as source and B as destination, or the other way around.

If the edge represents a road or a river, one may use the actual metric distance as length. If the edge links arbitrary
localities, one may opt to use euclidean distance, calculated from the x and y coordinates (using Pythagoras
theorem).

3.2 Specifying a model: the script

Once the user has specified the two data files, the next step is to define the model to be executed. This is done
in the .epg script file. The .epg script is a text file and can be edited with any editor (not word processor). This
script must be prepared with care.

The best way to write down your own .epg is to edit an already existing .epg file. So, open Epigrass, choose an
.epg file and click on the Edit button. Your favorite editor will open and you can start editing. Don’t forget to
save it as a new file in your working directory. Of course, there is an infinite number of possibilities regarding the
elaboration of the script. It all depends on the goals of the user.

Note: Another way to edit an .epg file is to open it whith the graphical editor provided with Epigrass. Just type
‘epgeditor yourmodel.epg’.

For the beginner, we suggest him/her to take a look at the .epg files in the demo directory. They are all commented
and may help the user in getting used with Epigrass language and capabilities.

Some hints to be successful when editing your .epg:

• All comments in the script are preceded by the symbol #. These comments may be edited by the user as
he/she wishes and new lines may be added at will. Don’t forget, however, to place the symbol # in every
line corresponding to a comment.

• The script is divided into a few parts. These parts have capital letter titles within brackets. Don’t touch
them!

• Don’t remove any line that is not a comment. See below how to appropriately edit these command lines.

Let’s take a look now at each part of a script (this is the script .epg demo file):

Warning: All variables defined in a .epg are case-insensitive. Consider this fact when naming your model’s
variables.

3.2.1 Part 1: THE WORLD

The first section of the script is titled: THE WORLD. An example of its content is shown:

shapefile = [’riozonas_LatLong.shp’,’nome_zonas’,’zona_trafe’]
edges = edges.csv
sites = sites.csv
encoding =

Contents 13

Epigrass Documentation, Release 2.0a1

where,

shapefile Is a list with 3 elements: the first is the path, relative to the working directory, of the shapefile file; the
second is the variable, in the shapefile, which contains the names of the localities (polygons of the map);
the third and last is the variable, in the shapefile, which contains the geocode of the localities. If you don’t
have a map for you simulation, leave the list empty: location = []).

edges This is the name of the .CSV (comma-separated-values) file containing the list of edges and their attributes.

sites This is the name of the .CSV file containing the list of sites and their attributes.

encoding This is the encoding used in your sites and edges files. This is very important when you use location
names which include non-ascii characters. The default encoding is latin-1. If you use any other encoding,
please specify it here. Example: utf-8.

Note: All paths in the .epg file are relative to the working directory.

3.2.2 Part 2: EPIDEMIOLOGICAL MODEL

This is the main part of the script. It defines the epidemiological model to be run. The script reads:

modtype = SIR

Here, the type of epidemiological model is defined, in this case is a deterministic SIR model. Epigrass has some
built-in models:

Name Determ. Stochastic
Susceptible-Infected-Recovered SIR SIR_s
Susceptible-Exposed-Infected-Recovered SEIR SEIR_s
Susceptible-Infected-Susceptible SIS SIS_s
Susceptible-Exposed-Infected-Susceptible SEIS SEIS_s
SIR with fraction with full immunity SIpRpS SIpRpS_s
SEIR with fraction with full immunity SEIpRpS SEIpRpS_s
SIR with partial immunity for all SIpR SIpR_s
SEIR with partial immunity for all SEIpR SEIpR_s
SIR with immunity wane SIRS SIRS_s

A description of these models can be found in the chapter Epidemiological modeling. The stochastic models use
Poisson distribution as default for the number of new cases (L(t+1)). Besides these, the user may define his/her
own model and access by the protect word Custom.

3.2.3 Part 3: MODEL PARAMETERS

The epidemic model is defined by variables and parameter which require initialization:

#==#
They can be specified as constants or as functions of global or
site-specific variables. Site-specific variables are provided
in the sites .csv file. In this file, all columns after the 4th
are collected into a values tuple, which can be referenced here
as values[0], values[1], values[2], etc.
Examples:
beta = 0.001
beta=values[0] #assigns the first element of values to beta
beta=0.001*values[1]
beta=0.001*N # N is a global name for total site population
Currently, Epigrass requires that parameters beta, alpha, e, r, delta, B, w, p
be present in the .epg even if they will not be used. Do not erase these lines.
Just disregard them if they are not useful to you.

14 Contents

Epigrass Documentation, Release 2.0a1

beta = 0.4 #transmission coefficient (contact rate * transmissibility)
alpha = 1 # clumping parameter
e = 1 # inverse of incubation period
r = 0.1 # inverse of infectious period
delta = 1 # probability of acquiring full immunity [0,1]
B = 0 # Birth rate
w = 0 # probability of immunity waning [0,1]
p = 0 #

These are the model parameters. Not all parameters are necessary for all models. For example, e is only required
for SEIR-like models. Don’t remove the line, however because that will cause an error. We recommend that, if
the parameter is not necessary, just add a comment after it as a reminder that it is not being used by the model.

In some cases, one may wish to assign site-specific parameters. For example, transmission rate may be different
between localities that are very distant and are exposed to different climate. In this case site specific variables can
be added as new columns to the site file. All columns after the geocode are packed into a tuple named values and
can be referenced in the order they appear. I.e., the first element of the tuple is values[0], the second element is
values[1], the third element is values[2] and so on.

Part 4: INITIAL CONDITIONS

In this part of the script, the initial conditions are defined. Here, the number of individuals in each epidemiological
state, at the start of the simulation, is specified. It reads:

#==#
Here, the number of individuals in each epidemiological
state (SEI) is specified. They can be specified in absolute
or relative numbers.
N is the population size of each site.
The rule defined here will be applied equally to all sites.
For site-specific definitions, use EVENTS (below)
Examples:
S,E,I = 0.8*N, 10, 0.5*N
S,E,I = 0.5*N, 0.01*N, 0.05*N
S,E,I = N-1, 1, 0
S = N
E = 0
I = 0

Here, N is the total population in a site (as in the datafile for sites). In this example, we set all localities to the same
initial conditions (all individuals susceptible) and use an event (see below) to introduce an infectious individual in
a locality. The number of recovered individuals is implicit, as R = N-(S+E+I)

Another possibility is to define initial conditions that are different for each site. For this, the data must be available
as extra columns in the site data file and these columns are referenced to using the values tuple explained above.

3.2.4 Part 5: EPIDEMIC EVENTS

The next step is to define events that will occur during the simulation. These events may be epidemiological
(arrival of an infected, for example) or a public health action (vaccination campaign, for example):

#===#
Specify isolated events.
Localities where the events are to take place should be Identified by the geocode, which
comes after population size on the sites data file.
All coverages must be a number between 0 and 1.
Seed : [(’locality1’s geocode’,epid state, n),(’locality2’s geocode’, epid state, n),...]
N infected cases will be added to locality at time 0.
Vaccinate: [(’locality1’s geocode’, [t1,t2,...], [cov1,cov2,...]),(’locality2’s geocode’, [t1,t2,...], [cov1,cov2,...])]
Quarantine: [(locality1’s geocode,time,coverage), (locality2’s geocode,time,coverage)]
#seed = [(4550601,’ip20’,10)] #santo cristo #

Contents 15

Epigrass Documentation, Release 2.0a1

seed = [(4552110,’ip20’,10)] #pechincha #
#seed = []
Vaccinate = [] #
Quarantine = []

The events currently implemented are:

seed One or more infected individual(s) are introduced into a site, at the beggining of the simulation. The notation
for a single event is: Seed = [(‘locality1’s geocode’,epid state, n),(‘locality2’s geocode’, epid state, n),...].
For example, seed = [(2,’I’,10)] programs the arrival of 10 infected individuals at site geocode 2, at time 1.

Vaccinate Implements a campaign that vaccinates a fraction of the population in a site, at a pre-defined time-
step. For multiple events, the notation is: [(‘locality1’s geocode’, [t1,t2,...], [cov1,cov2,...]),(‘locality2’s
geocode’, [t1,t2,...], [cov1,cov2,...])], where the first element of every triplet is the geocode of the city,
the second element is a list of the time(s) when the campaign is carried on, and the third element is the
coverage(s). For example, the event [(2,[10],[0.7])] means that city 2, at time 10, has 70% of its population
vaccinated. Mathematically, it means (in the model), the removal of individuals from the susceptible to the
recovered stage.

Quarantine Prevents any individual from leaving a site, starting at t. Currently disabled.

3.2.5 Part 6: TRANSPORTATION MODEL

Here, there are two options regarding the movement of infected individuals from site to site (through the edges).
If stochastic = 0, the process is simulated deterministically. The number of infected passengers commuting
through an edge is a fraction p of the infected population that is traveling. p is calculated as total passengers/total
population.

If stochastic = 1, the number of passengers is sampled from a Poisson distribution with parameter given by the
expected number of travelling infectives (calculated as above):

#===#
If doTransp = 1 the transportation dynamics will be
included. Use 0 here only for debugging purposes.
doTransp = 1

Mechanism can be stochatic (1) or deterministic(0).
stochastic = 1
#Average speed of transportation system in km per time step. Enter 0 for instantaneous travel.
#Distance unit must be the same specified in edges files
speed =0 #1440 km/day -- equivalent to 60 km/h

That ends the definition of the model.

3.2.6 Part 7: SIMULATION AND OUTPUT

Now it is time to define some final operational variables for the simulation:

#==#
Number of steps
steps = 50

Output dir. Must be a full path. If empty the output will be generated on the
same path as the model script.
outdir =

Output file
outfile = simul.dat

16 Contents

Epigrass Documentation, Release 2.0a1

Database Output
MySQLout can be 0 (no database output) or 1
MySQLout = 1

Report Generation
The variable report can take the following values:
0 - No report is generated.
1 - A network analysis report is generated in PDF Format.
2 - An epidemiological report is generated in PDF Format.
3 - A full report is generated in PDF Format.
siteRep is a list with site geocodes. For each site in this list, a detailed report is apended to the main report.
report = 0
siteRep = []

Replicate runs
If replicas is set to an integer(n) larger than zero, the model will be run
n times and the results will be consolidated before storing.
RandSeed = 1: the seed will be randomized on each replicate
RandSeed = 2: seeds are taken sequentially from the site’s file
Note: Replicate mode automatically turn off report and batch options.
Replicas = 10
RandSeed = 2
#Batch Run
list other scripts to be run in after this one. don’t forget the extension .epg
model scripts must be in the same directory as this file or provide full path.
Example: Batch = [’model2.epg’,’model3.epg’,’/home/jose/model4.epg’]
Batch = []#[’sarsDF.epg’,’sarsPA.epg’,’sarsRS.epg’]

where,

step Number of time steps for the simulation.

outdir Directory for data output (currently not in use)

outfile .csv filename that can be imported into R as a dataframe. This .csv file contains the simulated timeseries
for all nodes.

MySQLout Use MySQLout = 1 if simulated time series are to be stored in MySQL database. Time series of
L, S, E, and I, from simulations, are stored in a MySQL database named epigrass. The results of each
individual simulation is stored in a different table named after the model’s script name, the date and time
the simulation has been run. For instance, suppose you run a simulation of a model stored in a file named
script.epg, then at the end of the simulation, a new table in the epigrass database will be created with
the following name: script_Wed_Jan_26_154411_2005. Thus, the results of multiple runs from the same
model get stored independently.

Batch=[] Script files included in this list are executed after the currently file is finished.

3.3 The Graphical User Interface(GUI)

Epigrass comes with a simple but effective GUI, that allows the user to control some aspects of the run-time
behavior of the system. The Gui can be invoked by typing texttt{epigrass} in prompt of a console. We suggest the
user to start Epigrass from the same directory where his/her model definition is located (.csv and .epg files).

All the information that is entered via the GUI gets stored in a hidden file called texttt{.epigrassrc} stored in the
home folder of the user. Every time the GUI is invoked, the data stored in the texttt{.epigrassrc} file is used to fill
the forms in the GUI. The gui is designed as a tabbed notebook with four tabs (Run Options, Settings, Utilities,
and Visualization).

Contents 17

Epigrass Documentation, Release 2.0a1

At the bottom of the Gui there are three buttons Help, Start and Exit. Their functions will be explained below.
Immediately above the Run and Exit buttons, there is a small numeric display that will display the simulation
progress after it has been started.

Figure 3.1: First tab of Epigrass GUI. This is where you setup your database output settings and the model to be
run.

3.3.1 Run Options

The first tab of the GUI, contains a number of variables that, with the exception of the model script filename,
should remain the same for most simulations you are going to run.

On the top of the first tab is a text box to enter the file name of the model script (something.epg). By clicking
on the Choose button at the right of this box, you get a file selection dialog to select your script file. If you need
you can click on the Edit button below to edit the script file with your favorite text editor.

Below, you can enter details about the MySQL database that will store the output of your simulations. Here you
can enter the server IP, port, user and password. On the first time you run the GUI these input boxes will be filled
with the default values for these variables (server on localhost, port 3306, user epigrass and password epigrass)

3.3.2 Settings

On the settings page, you can enter personal details such as user name (To be used in the simulation report),
preferred text editor and preferred PDF reader. The preferred text editor will be used to open your script from the
GUI, when you click on the edit button in the first tab. The PDF reader specified, will be used to open the report
file, when requested (Utilities tab) and the user manual, when the user clicks on the help button on the bottom-left
corner of the GUI.

On this tab, the language of the GUI can also be selected from a list of available translations. The effects of
language changes will only take place when the next time the GUI is started.

18 Contents

Epigrass Documentation, Release 2.0a1

Figure 3.2: Settings tab of the Epigrass GUI. This is wher you configure the behavior os the GUI. Values set here
will be remembered on future runs.

3.3.3 Utilities

In the Utilities tab, you can get feed back from the simulator. Especially during long simulation runs, it is good to
know how it is progressing. During the simulation, text messages regarding the status of the simulation are written
to the text box on the left.

On the right, there is a button for backing up the data base and another for opening the report generated by the last
simulation. Since report PDFs ar stored in folder directly below the ones on which the simulation is started, older
reports should still be accessible and can be opened directly by selecting the desired report using the operating
system’s file manager.

3.3.4 Visualization

The fourth tab of the GUI is the visualization Tab. This tab was designed for playing animations of any simulation
data that is stored in the database. Pressin the Scan DB button, causes the available tables in the epigrass database
to be listed in the Simulations stored combo box. The user can then select one of these simulations to visualize.
Once the simulation is selected the Variable to display combo-box will fill-up with the variables in the table
devoted to the simulation. Select a variable.

Once the Start animation button is pressed, a graphical display window pops up, and the simulation results will
be displayed as a map or a graph (if no map was specified at the .epg). The animation can be replayed or
moved to any timestep by dragging on the slider under the display widget. When the user moved the mouse over
a polygon in the map(or node in the graph) its name and geocode appears as a tooltip. Polygons (nodes) can be
selected with the mouse to display their full time series in the plot below the top display widget.

Contents 19

Epigrass Documentation, Release 2.0a1

Figure 3.3: Visualization tab of the Epigrass GUI. The simulations and varibales to inspect are chosen here.

3.3.5 Operation

For running simulations, after all the information has been entered and checked on the first tab of the GUI, you
can press the Run button to start the simulation or the :guilabel‘Exit‘ button. When the Run button is pressed, the
~/.epigrassrc file is updated with all the information entered in the GUI. If the Exit button is pressed, all
information entered since the last time the Run button was pressed is lost.

Epigrass also allows running simulation straight from the command line, with the epirunner executable. all you
have to do is:

$ epirunner mymodel.epg

and the model will executed with the settings specified in the ~/.epigrassrc file. for help with epirunner,
type:

$ epirunner -h
Usage: epirunner [options] your_model.epg

Options:
--version show program’s version number and exit
-h, --help show this help message and exit
-b <mysql|sqlite|csv>, --backend=<mysql|sqlite|csv>

Define which datastorage backend to use
-u DBUSER, --dbusername=DBUSER

MySQL user name
-p DBPASS, --password=DBPASS

MySQL password for user
-H DBHOST, --dbhost=DBHOST

MySQL hostname or IP address

20 Contents

Epigrass Documentation, Release 2.0a1

Contents 21

22

CHAPTER

FOUR

Writing Custom Models

The most powerful feature of Epigrass is the ability to use custom models. It allows the user to specify intra-node
dynamics and, in doing so, break away from the limitations imposed by the built-in models.

By learning to write his/her own models, the user begins to realize the full potential of Epigrass, which goes
beyond being a platform to simulate networked epidemics. In reality Epigrass can be used to model any distributed
dynamical system taking place on a set of nodes (connected or not).

4.1 Getting Started

The best way to get started in writing custom models is to look at the example distributed with Epigrass. It can be
found in demos/CustomModel_example.py:

This is a custom model to used in place of Epigrass’ built-in models. Custom
models must always be on a file named CustomModel.py and contain at least
a function named Model. Both the File name and the function Names are case-sensitive,
so be careful. Please refer to the manual for intructions on how to write your
own custom models.

def Model(self,vars,par,theta=0, npass=0):
"""
Calculates the model SIR, and return its values.

* vars The state variables of the models

* par The parameters (Beta, alpha, E,r,delta,B, w, p) see docs.

* theta = infectious individuals from neighbor sites

* npass = Total number of people arriving at this node
"""
Get state variables’ current values

if self.parentSite.parentGraph.simstep == 1: # if first step
Define variable names to appear in the output
self.parentSite.vnames = (’Exposed’,’Infectious’,’Susceptible’)
And get state variables’s initial values (stored in dict self.bi)

E,I,S = (self.bi[’e’],self.bi[’i’],self.bi[’s’])
else: # if nor first step

E,I,S = vars

Get parameter values
N = self.parentSite.totpop
beta,alpha,e,r,delta,B,w,p = (self.bp[’beta’],self.bp[’alpha’],
self.bp[’e’],self.bp[’r’],self.bp[’delta’],self.bp[’b’],
self.bp[’w’],self.bp[’p’])

#Vacination event (optional)
if self.parentSite.vaccineNow:

S -= self.parentSite.vaccov*S

23

Epigrass Documentation, Release 2.0a1

Model
Lpos = beta*S*((I+theta)/(N+npass))**alpha #Number of new cases
Ipos = (1-r)*I + Lpos
Spos = S + B - Lpos
Rpos = N-(Spos+Ipos)

Update stats
self.parentSite.totalcases += Lpos #update number of cases
self.parentSite.incidence.append(Lpos)

Raise site infected flag and add parent site to the epidemic history list.
if not self.parentSite.infected:

if Lpos > 0:
self.parentSite.infected = self.parentSite.parentGraph.simstep
self.parentSite.parentGraph.epipath.append(
(self.parentSite.parentGraph.simstep,
self.parentSite,self.parentSite.infector))

self.parentSite.migInf.append(Ipos)

return [0,Ipos,Spos]

Let’s analyze the above code. The first thing to notice is that an Epigrass custom model is a Python program. So
anything you can do with Python in your system, you can do in your custom model. Naturally, your knowledge
of the Python programming language will define how far you can go in this customization. There are a few
requirements on this Python program in order to make it a valid custom model from Epigrass’s perspective.

1. It must define a global function named Model. This function will be inserted as a method on every node object, at run time. (a) This function must declare the following arguments: •
self : reference to the model object.

• vars: A list with the values of the model’s state variables in time t-1 in the same order as
returned by this function.

• par: The parameters of the model. Listed in the same order as defined in the .epg file.
• theta: Number of infectious individuals arriving from neighboring sites. For disconnected

models, it is 0.
• npass: The total number of passengers arriving from neighboring sites. For disconnected

models, it is 0.
(b) In the beginning of the function you define a list of strings (self.parentSite.vnames) which will be

the names used when storing the resulting time-series in the database. Choose strings that are not
very long and are meaningful. You only need to do this once, ate the beginning of the simulation
so put it inside an if statement, which will be executed only at time-step 1 (see code above).

(c) After defining variable names, set their initial values in the same if clause. An else clause linked
to this one will set variables values for the rest of the simulation.

(d) Define local names for the total population N and fixed parameters.
(e) Proceed to implement your model anyway you see fit.
(f) Feed some site level variables (incidence,) with the result of the simulation. • incidence: list

of new cases per time step.
• infected: Boolean stating if the site has been infected, i.e., it has had an autoctonous case.
• epipath: This variable is at the graph level and contains the path of spread of the simulation.
• migInf : Number of infectious individuals in this site per time-step.

(g) Finally, this function must return a list/tuple with the values of the state variables in the same
order as received in vars.

Warning: The strings in self.parentSite.vnames must be valid SQL variable names, or else you
will have a insert error at the end of the simulation.

24 Contents

Epigrass Documentation, Release 2.0a1

After defining this function with all its required features, you can continue to develop you custom model, writing
other functions classes, etc. Note however, that only the Model function will be called by Epigrass, so any other
code you add to your program must be called from within that function.

Note: Since CustomModel is imported from within Epigrass, any global code (unindented) in it is also exe-
cuted. So you may add imports and other initialization code.

Warning: The name CustomModel.py is case-sensitive and cannot be changed. The same is true for the
Model function.

4.2 The Environment

Figure 4.1: Nesting of the objects inside a Simulate object.

From quickly going through the example Custom model above it probably became clear, to the Python-initiated,
that Yous can access variables at the node and graph levels. This is possible because Model becomes a method in
a node object which in is turn is contained into a graph object (see figure).

Besides being nested within the graph object, node and edge contain references to their containers. This means

Contents 25

Epigrass Documentation, Release 2.0a1

that using the introspective abilities of Python the user can access any information at any level of the full graph
model and use it in the custom model. In order to help you do this, Let’s establish an API for developing custom
models.

4.2.1 Model Development API

All attributes and methods (functions) from all around the simulation must be references from the model’s per-
spective, denoted by self. The parent objects can be accessed through the following notation:

• self.parentSite Is the Site (node) containing the model.

• self.parentSite.parentGraph Is the Graph containing the parent site of the model.

The following attributes and methods can be accessed by appending them to one one the objects above. For
example:

self.parentSite.parentGraph.simstep

Site Attributes and Methods

Not all attributes and methods are listed, only the most useful. For a complete reference, look at the source code
documentation.

class Site()
self.parentSite. Actually named siteobj in the source code.

bi
Dictionary with initial values for all of the model’s state variables. Keys are the variable names.

bp
Dictionary with initial values for all of the model’s parameters. Keys are the parameter names.

totpop
Initial total population

ts
List containing the model output time series (variables in the same order of the model)

incidence
Incidence time series

infected
Has the site been already infected? (logical variable)

sitename
Site’s name (provided in the .csv)

values
Tuple containing extra-variables provided by .csv file

parentGraph
Graph to which Site belongs (see class Graph)

edges
List containing all edge objects connected to Site

inedges
List containing all inbound edges

outedges
List containing all outbound edges

geocode
Site’s geocode

modtype
Type of dynamic model running in Site

26 Contents

Epigrass Documentation, Release 2.0a1

vaccination
Time and coverage of vaccination event. Format as in .epg

vaccineNow
Flag indicating that it is vaccine day (0 or 1)

vaccov
Current vaccination coverage

vaccinate(cov)
At time t, the population is vaccinated with coverage cov

getOutEdges()
Returns list of outbound edges

getInEdges()
Returns list of inbound edges

getNeighbors()
Returns a dictionary of neighbor sites as keys and distances as values

getDistanceFromNeighbor(site)
Returns the distance in km from a given neighbor

getDegree(site)
Returns degree of this site, that is, the number of sites connected to it

Graph Attributes and Methods

Not all attributes and methods are listed, only the most useful. For a complete reference, look at the source code
documentation.

class Graph()
self.parentSite.parentGraph

simstep
Time-step of the simulation. Use it to keep track of the simulation progress.

speed
The speed of the transportation system

maxstep
Final time-step of the simulation

episize
Current size of the epidemic, graph-wise.

site_list
Full list of nodes in the graph. Each element in this list is a real node object.

edge_list
Full list of nodes in the graph. Each element in this list is a real node object.

getSite(name)
Returns an site object named name

Contents 27

28

CHAPTER

FIVE

Indices and tables

• Index

• Module Index

• Search Page

29

30

INDEX

B
bi (Site attribute), 26
bp (Site attribute), 26

C
custom models, 23

D
Database

epigrass database, 5
results table, 5

E
edge, 4
edge_list (Graph attribute), 27
edges (Site attribute), 26
episize (Graph attribute), 27

G
geocode (Site attribute), 26
getDegree() (Site method), 27
getDistanceFromNeighbor() (Site method), 27
getInEdges() (Site method), 27
getNeighbors() (Site method), 27
getOutEdges() (Site method), 27
getSite() (Graph method), 27
Graph (class), 27

I
incidence (Site attribute), 26
inedges (Site attribute), 26
infected (Site attribute), 26

M
maxstep (Graph attribute), 27
models, 4

epidemiological models, 4
network models, 4

modtype (Site attribute), 26

N
node, 3

O
outedges (Site attribute), 26

P
parentGraph (Site attribute), 26

S
shapefile, 3
simstep (Graph attribute), 27
Site (class), 26
site, 3
site_list (Graph attribute), 27
sitename (Site attribute), 26
speed (Graph attribute), 27

T
totpop (Site attribute), 26
ts (Site attribute), 26

V
vaccinate() (Site method), 27
vaccination (Site attribute), 27
vaccineNow (Site attribute), 27
vaccov (Site attribute), 27
values (Site attribute), 26

31

	Overview of Epigrass
	Modeling Approach
	Geographical Network Models
	The Simulation

	Building and Installing
	Required Packages

	Using Epigrass
	Data
	Specifying a model: the script
	The Graphical User Interface(GUI)

	Writing Custom Models
	Getting Started
	The Environment

	Indices and tables
	Index

